I. INTRODUCTION NE promising strategy for tactile sensing is based on measuring the deformation of a flexible skin (cosmesis) and an underlying conductive fluid layer by its effect on the impedance of electrodes on the surface of a rigid core
نویسندگان
چکیده
Grasping of objects by robotic hands in unstructured environments demands a sensor surface that is durable, compliant, and responsive to various force and slip conditions. A compliant and robust skin can be as critical to grasping objects as the sensor it protects. In an effort to combine compliant mechanics and robust sensing, a biomimetic tactile sensor is being developed. Deformations of its skin can be detected by displacing a conductive fluid from the vicinity of electrodes on a rigid core. In this study, we used simplified finite element models to understand the effects of various textures for the inner surface of the skin and then produced the more promising textures by molding the elastomeric skin material against negatives made by stereolithography. The impedance vs. force relationships obtained with these molded skins had the predicted and desired wide dynamic range. By selecting the appropriate materials for the skin and fluid, previously described problems with hysteresis and diffusion losses have been greatly reduced.
منابع مشابه
Design and Modeling of a New Type of Tactile Sensor Based on the Deformation of an Elastic Membrane
This paper presents the design and modeling of a flexible tactile sensor, capable of detecting the 2D surface texture image, contact-force estimation and stiffness of the sensed object. The sensor is made of polymer materials. It consists of a cylindrical chamber for pneumatic actuation and a membrane with a mesa structure. The inner radius of the cylindrical chamber is 2cm and its outer radius...
متن کاملDesign, Modeling, and Construction of a New Tactile Sensor for Measuring Contact-Force
This paper presents the design, modeling, and testing of a flexible tactile sensor and its applications. This sensor is made of polymer materials and can detect the 2D surface texture image and contact-force estimation. The sensing mechanism is based on the novel contact deflection effect of a membrane. We measure the deflection of the membrane with measuring the strain in the membrane with emb...
متن کاملBiomimetic Tactile Sensor Array
The performance of robotic and prosthetic hands in unstructured environments is severely limited by their having little or no tactile information compared to the rich tactile feedback of the human hand. We are developing a novel, robust tactile sensor array that mimics the mechanical properties and distributed touch receptors of the human fingertip. It consists of a rigid core surrounded by a w...
متن کاملRigidity and Irregularity Effect on Surface Wave Propagation in a Fluid Saturated Porous Layer
The propagation of surface waves in a fluid- saturated porous isotropic layer over a semi-infinite homogeneous elastic medium with an irregularity for free and rigid interfaces have been studied. The rectangular irregularity has been taken in the half-space. The dispersion equation for Love waves is derived by simple mathematical techniques followed by Fourier transformations. It can be seen t...
متن کاملA finite elements study on the role of primary cilia in sensing mechanical stimuli to cells by calculating their response to the fluid flow
The primary cilium which is an organelle in nearly every cell in the vertebrate body extends out of the cell surface like an antenna and is known as cell sensor of mechanical and chemical stimuli. In previous numerical simulations, researchers modeled this organelle as a cantilevered beam attached to the cell surface. In the present study, however, we present a novel model that accommodates for...
متن کامل